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Why dispersion matters for pulses: 

Many optical systems and experiments involve signals which vary fairly rapidly in time. A short burst of 
light—referred to as a pulse—might be used to carry information, as in an optical fiber communications 
system, or to achieve a high peak intensity for applications ranging from materials processing to high-
intensity physics research. 
 
Any time-varying signal necessarily comprises multiple frequency components. Therefore to understand 
how a time-varying light signal is transmitted through an optical component or system, we must 
determine how the system impacts its different frequency components. A wave experiences dispersion 
when different frequencies travel through the system in different times. Dispersion can significantly affect 
a short pulse of light, both advantageously, as in Chirped Pulse Amplification (CPA), and detrimentally. 
 
Modeling the effect of dispersion on a pulse: 

We can think of an optical component or system which provides dispersion to a light pulse as a “black 
box,” as illustrated in Figure 1. The input pulse is represented by the electric field Ein(t) and the resulting 
output pulse is represented by Eout(t). 

 
Figure 1 

Since we are interested mainly in the effects of dispersion, we assume there is a uniform amplitude 
frequency dependence, such that the same intensity of light is transmitted at each frequency. The system 
may then be described simply by the optical phase φ it imparts to each frequency ω of a light wave. 
 
To describe the pulse of light, we consider a simplified mathematical description of the pulse at 
wavelength λ traveling in direction z, 

 ( ) ( ) ( )tkzi
inin etetE 0ω−= , (1)  

where ein(t) describes the temporal shape of the pulse, k = 2π/λ is the wave propagation constant, and 
ω0 = 2πc/λ is the angular frequency of the wave with c the speed of light (3×108 m/s). It is assumed that 
e(t) varies in time much more slowly than the frequency ω0 of the wave. The subscript “in” identifies that 
the pulse is heading into the system of interest. 
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The mathematical procedure for calculating the output pulse Eout(t) is described in the APPENDIX to this 
Technical Note. While the method can be used for any phase function φ(ω), little insight is gained by 
simply turning this crank on a computer. Often the pulse spectrum is sufficiently narrow and the phase 
function φ is relatively smoothly varying over this narrow spectral range. Then φ at frequency ω can be 
well approximated by a Taylor series expansion about the central frequency ω0 according to 
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Expanding φ in this way not only simplifies the math, but also enables helpful physical interpretation of 
the physics of dispersion. The first term is just a constant phase and has no impact on the measured 
intensity of light transmitted through the system. The coefficient of the second term dφ/dω = φʹ has units 
of time and is called the group delay time. We will see why shortly. The coefficient of the third term 
d2φ/dω2 = φʺ has units of time squared and is called the group delay dispersion, or GDD [1]. 
 
A simple example – a gaussian pulse shape: 

Much insight on how dispersion affects a pulse can be gained using the simple approximation of phase in 
(2) and a gaussian pulse shape. The gaussian pulse can be described by 

 ( ) ( )2τ−= t
in ete , (3)  

where τ is a measure of the pulse width. The spectrum of this gaussian pulse, denoted ēin(ω), also has a 
gaussian profile, and can be written 
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These two profiles are illustrated in Figure 2, where both the 1/e and half-maximum widths are identified. 
The pulse has a full width at 1/e of 2τ, whereas the spectrum has a full width at 1/e of 4/τ. So the broader 
the pulse is, the narrower its spectrum is. 

 
Figure 2 

Using the method described in the APPENDIX, we can now calculate the full output pulse as 
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where 
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is a time-dependent frequency of the output pulse. In (5) and (6) we have defined the following quantities: 
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C is called the chirp parameter and τC is the chirped pulse width. Looking closely at (5) – (7) we observe 
four fundamental ways a pulse is affected by dispersion. 
 
Consequences of dispersion for a pulse: 

1. The pulse is delayed. 

From (5) it is clear that the output pulse also has a gaussian shape, but t has been replaced by t – φʹ in the 
time dependence. Referring to Figure 3, physically this substitution means that the pulse emerging from 
the optical system is no longer centered at time t = 0, but is now centered at time t = φʹ. In other words, it 
has been delayed in time by φʹ. The first derivative φʹ is called the group delay time because it is the 
amount of time the group of frequency components that form the pulse are delayed by the optical system. 

 
Figure 3 

Note that on a time graph like those shown in Figure 3, the convention for interpreting the orientation of 
the pulse is as follows:  if an observer sits at the value of z at which the pulse shape e(t) is evaluated, then 
the observer sees the value of e(t) shown on the plot after waiting a time t on the plot. Thus the observer 
sees the left side (i.e., earlier times) of the plotted pulse shape first. 
 
2. The pulse is broadened. 

Again referring to the exponent of the gaussian function in (5), the width of the output pulse is now 
determined by τC instead of τ. The output pulse is broader than the input pulse by a factor of 21 C+ . 
Since C is proportional to the GDD parameter φʺ, then the higher the absolute value of φʺ, the more the 
pulse is broadened. Figure 4 illustrates a pulse that is delayed and broadened by the group delay time and 
GDD, respectively. 
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Figure 4 

Figure 5 shows examples of how the output pulse width of a gaussian pulse increases as a function of the 
GDD. In the graph on the left, five initial pulse widths ranging from 10 to 400 fs are considered for GDD 
values ranging from 0 to 10,000 fs2. Note the smaller the initial pulse width, the lower the GDD required 
to broaden the pulse substantially. For a 400 fs pulse, even 10,000 fs2 has almost no effect on the pulse 
width.  

 
Figure 5 

The graph on the right considers higher values of GDD to demonstrate how much dispersion is required 
to stretch or compress a pulse with a width of 10’s of fs in a CPA system. Stretching to 100 ps requires 
about 1 ps2 = 106 fs2 of GDD, whereas to stretch to 1 ns requires about 10 ps2 = 107 fs2. 
 
3. The pulse is squished. 

According to (5) the amplitude of the dispersed electric field is “squished,” or reduced, by a factor of 

Cττ  relative to the amplitude of the input pulse. This effect is also illustrated in Figure 4. Since the 
intensity of a light wave is proportional to |E(t)|2, then the output pulse peak intensity is a factor of 

Cττ  smaller than that of the input pulse. As an example, Figure 6 shows how the relative intensity 
depends on GDD for the same initial pulse widths and range of GDD values shown in the graph on the 
left in Figure 5. 
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Figure 6 

4. The pulse is chirped. 

Chirp refers to a signal in which the frequency increases or decreases with time. We expect the dispersed 
pulse to be chirped because the mechanism by which it is broadened is in fact different frequency 
components being delayed by different times as it is transmitted through the dispersing component or 
system. For a gaussian pulse, the chirp is described by the time-dependent frequency ω(t) in (6). This is 
an example of a linear chirp, since the frequency is directly proportional to time. 
 
Figure 7 illustrates an unchirped initial pulse (left) as well as chirped pulses resulting from both positive 
and negative GDD (center and right, respectively). For illustration purposes the frequency relative to the 
pulse width shown here is much lower than typical in most real systems. 

 
Figure 7 
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Notice that for φʺ > 0 (positive GDD) the frequency increases at later times. Thus a fixed observer sees 
lower frequencies in the chirped pulse arrive first. Loosely, we say the “red” part of the pulse arrives 
ahead of, or leads, the “blue” part. For φʺ < 0 (negative GDD) the red part of the pulse lags the blue part. 
 
Dispersion from a pair of gratings: 

In the Technical Note “Temporal dispersion” we found the temporal dispersion parameter for diffraction 
of light off of a pair of parallel gratings, 
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where m is the order of diffraction, λ is the wavelength of light, f is the grating frequency, θm is the angle 
of diffraction, and the subscript “⊥” denotes that the grating separation s is measured along the direction 
normal to the grating surfaces. This physically useful parameter can be interpreted as follows:  for each 
meter of separation s between two parallel gratings, the difference in propagation delay time dτ between 
two wavelengths of light separated by dλ can be approximated by the expression on the right side of (8) 
multiplied by dλ. 
 
We may also directly relate D to GDD. Using the chain rule of calculus, we can see 
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where we have used the delay time τ = dφ/dω. From (9), we may now directly relate D to GDD as 
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Keeping careful track of units and simplifying, we may use the following conversion relations 
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where s is in meters and λ is in nm. Note that D and φʺ have opposite signs. Combining (8) and (10), we 
may directly write the GDD in terms of grating parameters as 
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For a simple parallel grating pair, the GDD is always negative. In other words, the blue part of a pulse 
leads the red part. In most CPA systems pulses are stretched using an arrangement that provides positive 
dispersion [3], and then compressed using the negative dispersion from a parallel grating arrangement. 
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Using (12), we may plot an example of the GDD as a function of the angle of incidence for a certain 
wavelength. Figure 8 shows how the GDD of the –1st order depends on angle of incidence at 800 nm for 
three different grating frequency values. 

 
Figure 8 

The absolute value of the GDD is larger for higher grating frequencies at a given angle of incidence. 
Furthermore it increases rapidly at smaller incidence angles, as the diffraction angle approaches –90º. 
 
APPENDIX – Mathematical treatment of pulses: 

As explained above, we can describe the pulse in terms of its electric field according to (1). We are only 
concerned with how the scalar electric field E(t) depends on time t. We ignore the polarization and 
transverse beam properties of the pulse, equivalent to assuming a nearly perfect plane wave with simple 
(e.g., linear) polarization. In (1) E(t) is assumed to be a real quantity, obtained by taking the real part of 
the right-hand side of this equation (the “real part” notation is suppressed). 
 
Since the optical component or system imparting dispersion to the pulse is characterized by its frequency 
response, we must somehow transform (1) into a description of the electric field in terms of frequency, 
not time. We can think of the pulse shape ein(t) as a superposition of many monochromatic plane waves, 
each at frequency ω = ω0 + Ω, and each with an amplitude ēin(Ω) = dΩ/2π. Writing this superposition as 
an integral, 
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Note that (13) is has the mathematical form of an inverse Fourier transform. Therefore ēin(Ω) must be the 
Fourier transform of ein(t), or 



 

 
8 

 ( ) ( )∫ Ω=Ω
∞

∞−

Ω detee ti
inin . (14) 

In words, ein(t) is the initial, slowly varying pulse shape, and ēin(Ω) is the initial spectrum of the pulse. 
The temporal and spectral descriptions of the pulse form a Fourier transform pair. Therefore, if the pulse 
is very narrow in time, the spectrum must be very broad, and vice versa. 
 
For each value of Ω = ω – ω0, we know the wave accumulates an additional phase φ(ω = ω0 + Ω) as it 
passes through the dispersing component or system. Therefore the output spectrum is simply 

 ( ) ( ) ( )Ω+ωφΩ=Ω 0i
inout eee . (15) 

The output pulse shape is the inverse Fourier transform of the output spectrum, or 
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The full output pulse electric field is then simply 

 ( ) ( ) ( )tkzi
outout etetE 0ω−= . (17) 

To summarize, the procedure for calculating the output pulse Eout(t) from the input pulse Ein(t) is as 
follows: 
 

a) take the Fourier transform of the input pulse shape ein(t) according to (14); 
b) multiply the spectrum ēin(Ω) from a) by exp(iφ) using φ(ω = ω0 + Ω) according to (15); 
c) take the inverse Fourier transform of the output spectrum ēout(Ω) from b) according to (16), and 

then put it in the form of the full output pulse according to (17). 
 
This prescription is valid for any phase function φ. However, often the pulse spectrum is sufficiently 
narrow and the phase function φ is sufficiently smoothly varying over this narrow spectral range that (2) 
is a reasonable approximation and can greatly simplify the math and offer helpful intuition, as we see 
above for the gaussian pulse shape example. 
 
References and end notes: 

[1] Often group delay dispersion (GDD) is confused with group velocity dispersion (GVD). These two 
quantities are closely related, as both describe the second-order dependence of a wave’s properties on 
frequency. GVD specifically refers to frequency dependence of a wave’s propagation constant. It 
makes sense to talk about GVD in a system in which a wave is propagating over some distance, such 
as a block of glass with a frequency dependent index of refraction or an optical fiber. In this case 
GDD – the dispersion or frequency dependence of the time delay—is simply the GVD multiplied by 
the length traveled. However in the case of an optical component or system that imparts dispersion in 
a more complicated way, it doesn’t make sense to describe dispersion in terms of GVD. We only see 
the overall group delay, or, in terms of dispersion, the overall group delay dispersion, GDD. 
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[2] See PGL Technical Note “Temporal dispersion” 
[3] See PGL Technical Note “Pulse stretchers and compressors” 
 


